Prolonged activation of Ca2+-activated K+ current contributes to the long-lasting refractory period of Aplysia bag cell neurons.
نویسندگان
چکیده
Stimulation of the bag cell neurons of Aplysia activates several biochemical pathways, including protein kinase C (PKC), and alters their excitability for many hours. After an approximately 30 min afterdischarge, these neurons enter an approximately 18 hr inhibited state during which additional stimulation fails to evoke discharges. In vivo, this refractory period limits the frequency of reproductive behaviors associated with egg laying. We have now examined the role of Ca2+-activated K+ (BK) currents in the refractory period. Outward currents gated by both intracellular Ca2+ and depolarization, with pharmacological characteristics of BK currents, were recorded in isolated bag cell neurons. These currents were enhanced by the BK channel activators phloretin and 1,3-dihydro-1-[2-hydroxy-5-(trifluoro-methyl)phenyl]-5-trifluoromethyl-2H-benzimidazol-2-one and inhibited by the BK blocker paxilline. The BK component of K+ current was enhanced by 12-O-tetradecanoyl-phorbol-13-acetate, an activator of PKC, and this effect was blocked by sphinganine and PKC(19-36), inhibitors of PKC in bag cell neurons. To test whether the BK current is altered during the refractory period, intact clusters were stimulated to afterdischarge, and neurons were isolated after the clusters had entered the refractory period. Compared with unstimulated cells, current density was almost doubled in refractory neurons. This increase in current was inhibited by preincubating clusters in sphinganine. Treatment of refractory clusters with paxilline significantly restored the ability of stimulation to evoke afterdischarges. Conversely, application of phloretin to previously unstimulated clusters inhibited the onset of afterdischarges. These results indicate that a prolonged increase in BK channel activity contributes to the prolonged refractory period of the bag cell neurons.
منابع مشابه
Persistent Ca2+ current contributes to a prolonged depolarization in Aplysia bag cell neurons.
Neurons may initiate behavior or store information by translating prior activity into a lengthy change in excitability. For example, brief input to the bag cell neurons of Aplysia results in an approximate 30-min afterdischarge that induces reproduction. Similarly, momentary stimulation of cultured bag cells neurons evokes a prolonged depolarization lasting many minutes. Contributing to this is...
متن کاملPersistent Ca Current Contributes to a Prolonged Depolarization in Aplysia Bag Cell Neurons
Tam AK, Geiger JE, Hung AY, Groten CJ, Magoski NS. Persistent Ca current contributes to a prolonged depolarization in Aplysia bag cell neurons. J Neurophysiol 102: 3753–3765, 2009. First published October 14, 2009; doi:10.1152/jn.00669.2009. Neurons may initiate behavior or store information by translating prior activity into a lengthy change in excitability. For example, brief input to the bag...
متن کاملThe neuropeptide egg-laying hormone modulates multiple ionic currents in single target neurons of the abdominal ganglion of Aplysia.
The bag cell neurons of the abdominal ganglion of Aplysia are a useful system for the study of peptidergic neurotransmission. A 20 min burst of impulse activity in the bag cells induces or augments repetitive firing in LB and LC neurons in the abdominal ganglion for up to several hours. Previous experiments have indicated that this effect is mediated by the putative bag cell transmitter egg-lay...
متن کاملPeptidergic neurons of Aplysia lose their response to cyclic adenosine 3':5'-monophosphate during a prolonged refractory period.
Although the peptidergic bag cell neurons of Aplysia are ordinarily silent, they respond to brief electrical stimulation by producing an afterdischarge of about 30 min duration. This afterdischarge is followed by a refractory period lasting many hours during which electrical stimulation either fails to initiate afterdischarges or produces discharges of much shorter duration. Previous work has d...
متن کاملIonic currents underlying developmental regulation of repetitive firing in Aplysia bag cell neurons.
We have investigated the developmental regulation of the ability to fire repetitively in the bag cell neurons of Aplysia californica, a neuronal system in which the behavioral effects of repetitive firing are well characterized. Adult bag cell neurons exhibit an afterdischarge, consisting of prolonged depolarization and repetitive firing, which causes the release of several peptides from these ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 23 شماره
صفحات -
تاریخ انتشار 2002